skip to main content


Search for: All records

Creators/Authors contains: "Porazinska, Dorota L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background and Aims Human-driven nitrogen (N) deposition can alter soil biogeochemistry and plant communities, both critical to soil biota. However, understanding the relative impact of the relationship between nutrient resources and plants on soil communities has been hindered by a lack of experimental manipulations of both factors. We hypothesized that soil nematode communities would be structured predominantly by N addition via overall increased abundance, decreased diversity, and compositional shifts to dominance of r-selected bacterial-feeding nematodes. In contrast, we expected plant efects to be less evident and restricted to nematodes directly associated with plants. Methods We used a long-term (18-yrs) experiment in moist meadow alpine tundra involving N addition and codominant plant (nitrophilic Deschampsia cespitosa and nitrogen sensitive Geum rossii) removal. We characterized nematode communities via 18S rRNA metabarcoding and used soil biogeochemistry, plant, and microbial variables to determine factors shaping their communities. Results The N addition treatment increased overall nematode abundance, decreased diversity, and afected the composition of all nematode trophic groups. Overall, nematode communities shifted to dominance of bacterial feeding nematode taxa adapted to N-enriched environments. The likely drivers of this shift were increased soil nitrate and lower pH. The direct efects of codominant plants were more limited, with only changes in Geum rossii appearing to afect nematode responses. Conclusion Overall, nematode communities in N-limited alpine ecosystems are highly sensitive to increases in N availability, irrespective of the nature of N preferences of codominant plants. The resulting nematode community restructuring could signify future shifts in soil functioning throughout alpine landscapes. 
    more » « less
    Free, publicly-accessible full text available October 13, 2024
  2. Abstract

    Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four ‘cosmopolitan’ bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.

     
    more » « less
  3. Abstract

    Recent work examining nematode and tardigrade gut microbiomes has identified species-specific relationships between host and gut community composition. However, only a handful of species from either phylum have been examined. How microbiomes differ among species and what factors contribute to their assembly remains unexplored. Cyanobacterial mats within Antarctic Dry Valley streams host a simple and tractable natural ecosystem of identifiable microinvertebrates to address these questions. We sampled 2 types of coexisting mats (i.e., black and orange) across four spatially isolated streams, hand-picked single individuals of two nematode species (i.e.,Eudorylaimus antarcticusandPlectus murrayi) and tardigrades, to examine their gut microbiomes using 16S and 18S rRNA metabarcoding. All gut microbiomes (bacterial and eukaryotic) were significantly less diverse than the mats they were isolated from. In contrast to mats, microinvertebrates’ guts were depleted of Cyanobacteria and differentially enriched in taxa of Bacteroidetes, Proteobacteria, and Fungi. Among factors investigated, gut microbiome composition was most influenced by host identity while environmental factors (e.g., mats and streams) were less important. The importance of host identity in predicting gut microbiome composition suggests functional value to the host, similar to other organisms with strong host selected microbiomes.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment. 
    more » « less